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Abstract

The world/of mathematical programming has seen a remarkable surge of
activity follo ing publication of Karmarkar's projective alggithu ,May 984.
A review of the ensuing three years has already appeared.(Momaj31J)COne
year later, w review some of the main methods and surrounding events, and
focus on references that contain computational results. ".

Keywords: Linear programming, interior-point methods, barrier-function
methods, Newton's method, Karmarkar's projective method . .,, , ' , - -

1. Introduction

It is still only four years since Narendra Karmarkar of AT&T Bell Laboratories
presented the mathematical features of an apparently new method for solving linear
programming (LP) problems [23]. The problem was assumed to be in the form

minimize cTx subject to Ax = 0, e x = 1, x > 0, (1)
x

where A is m x n, m < n and e is a vector of l's. It was also assumed that x = e

is a feasible solution, and that the optimal objective value is zero. These and other

restrictions have since been lifted (though not without practical difficulty).

*The material contained in this report is based upon research supported by the Air Force Office
of Scientific Research Grant 87-01962; the U.S. Department of Energy Grant DE-FG03-87ER25030;
National Science Foundation Grants CCR-8413211 and ECS-8715153; and the Officc of Na.,l vx
search Contract N00014-87-K-0142.
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2 A challenge to the simplex method

A vital part of Karmarkar's analysis involved showing that the so-called potential
function eTxl H- xj could be reduced by a fixed amount every iteration. It followed
that even in the worst case, the number of iterations required to reach a solution
would be proportional n. The work per iteration was shown to be of order n2 " .
Hence, the total time required was bounded by a polynomial in n.

Broadly speaking, the bound on computation time for the projective method is
of order n3 '5 L (where L is a measure of the storage needed for the input data). In
more recent methods the bound has been reduced to o(n 3 L) [34,37], whereas for
the classical simplex method (4] the total time on certain contrived problems is of
order n22 .

1.1. A practical algorithm?

To operations researchers and others, it seemed immediately evident that th e amount
of work per iteration for the new method would be much greater than for the simplex
method, at least for "normal" LP problems. The crucial part of the computation
involves a Cholesky factorization AX 2 AT = RTR (with X diagonal, R triangular),

and this is normally much more expensive in time and storage than the sparse basis
factorization B = LU required by the simplex method.

Nevertheless, it seemed that the reduced number of iterations might sumetimes
compensate, and for very specially structured problems it was reasonable to suppose
that the Cholesky factors could be obtained quickly enough to give an efficient
algorithm.

1.2. Not just practical

Controversy soon enveloped the new algorithm. In a series of conference appearances
that are continuing to this day. Karmarkar has reported results that are uniformly
superior to those 3btained by the simplex method. The speed-up factors claimed
vary from 4 up to 84, 104, 190, 720 and even higher [24].

The factor of 4 was obtained using part of a set of 13 publicly available problems,
supplied on request by Stanford University in July 1984. This test set was later dis-
missed as "not representative of modern real-world problems in size or complexity",
even though several problems were omitted in the results reported, including the
problem that was by far the largest! (The PILOT model had about 1500 rows, 3700
columns and 43000 nonzeros-certainly only medium-scale by conventional stan-
dards, yet "large" in the sense that a cold-start solution with the simplex method
takes over 20 hours on a DEC VAXstation 1I.1)

Although much larger problems are indeed of interest, credibility at the time
depended strongly on results for iamiiia, ;noduls. Omisgion without comment of the
known most-difficult test cases inevitably generated scepticism.

Further controversy arose from the fact that the more spectacular results were
,L, ,l U from pi',ulk- 'a 'I' ."i. pruprietary, like the implementation itscif. Nei-

ther the problems nor the program could be seen by the outside world, and apart

'This is a typical run-time for MINOS 5.3 (May 1988), a portable Fortran code. A commercial
Mathematical Programming System would Lake about 30 minutes on an IBM 3090.

..



2. Primal and Dual LPs 3

from problem dimensions, the only results given were iteration counts and CPU
time. No plot of the individual iterations, no stopping criteria, no details about the
precision obtained or the reliability of the code.

1.3. A flurry of effort

In spite of the unsatisfactory circumstances, much feverish activity has been gener-
ated within the scientific community, and numerous researchers have launched into
projects they did not expect to be pursuing.

This is not entirely due to a windfall of government funding! There is also the
intrigue and the challenge.2

1.4. An objective view

The connections with more traditional areas of nonlinear programming and nu-
merical linear algebra, along with much analysis of path-following methods (e.g.,
[29,30,35]) have cast sufficient light on the scene for us to believe that good perfor-
mance is indeed possible on a significant proportion of real-world problems.

In terms of robustness the verdict is still out, since present implementations
(within our experience) are highly sensitive to slight changes in strategy. However,
it took four decades to make the simplex method (virtually) 100% reliable. Much
has been learned in that time about linear and nonlinear optimization. While the
methods inspired by Karmarkar are certainly difficult to make "bullet-proof', there
is every hope that useful and acceptably reliable implementations will be developed
within the next few years.

In the following sections we review the main mathematical variants that have
been propcsed so far, giving known computational results where possible.

2. Primal and Dual LPs

The special form (1) allowed certain geometrical arguments, and many research
papers have been written around it. However, operations researchers have long
been generating linear programs in the more practical form

Primal: minimize cTx subject to Ax = b, x > 0, (2)
X

with no assumptions about the optimal objective value. Variants of the Karmarkar
approach began to appear for solving (2) directly (without converting it to the
special form); e.g., [12,18). It was soon found that dual variables could be obtained
as by-products. Algorithms for the dual problem

Dual: maximize bTir subject to 4Tr - c, (3)
W

2The simplex method has been extremely successful so far, and computers are growing ever
faster, yet it is never enough. Factors of 100 or more are tantalizing and compelling, even in the
face of scepticism.

1 --



A challenge to the simplex method

also began to appear. We discuss the developments for both problems in roughly

chronological order. The most general case with upper and lower bounds on x is

covered in Section 6.

3. Newton's Method and Barrier Functions

Given a vector x, let X be a diagonal matrix whose j-th diagonal is xj. It will be

assumed that xj > 0 for j = 1 to n. Similarly for quantities z and Z.

The barrier function approach deals with inequality constraints such as x >

0 by adding a judicious function to the true objective. A characteristic is that

along any direction of descent from an interior point, there exists a strictly interior

minimizer. Usually the transformed objective function is infinite along the boundary

of the feasible region. Common barrier functions are the logarithmic and reciprocal
functions.

3.1. A primal barrier method

For the primal LP we consider subproblems of the form

nI
minimize F,(x) = cTx - E ln xj subject to Ax = b, (4)

j=1

where it (y > 0) is a specified parameter that will be set to decreasing values. As

S-+ 0, the solution of (4) approaches that of (2).
One of the first computational studies outside AT&T was undertaken by Gill et

al. [18], who recognized the connection between Karmarkar's method and Newton's

method applied to the barrier subproblems. Newton's method obtains a search

direction p by solving a system of the form

H A T  -) o '

where g and H are the first and second derivatives of F,(x).

Given a feasible interior point x, an estimate of the dual variables 7r and the
corresponding "reduced costs" z = c - ATr, the main steps prove to be as follows:

1. Define r = z - mX-le.

2. Solve the system

AX 2ATq = AX 2 r, or equivalently, min IIX(r - ATq)112 . (5)

3. Update r - r - q.

4. Define z = c - ATzr, r = z - X-'e and p = -(1/11)X 2 r.

5. Find a steplength a at which the barrier function F,(x + ap) is suitably less

than F,(x).



3. Newton's Method and Barrier Functions 5

6. Update x 4-- x + ap.

The algebra is evidently not much more complicated than in the simplex method.
However, Step 2 is crucial. The matrix AX 2AT is large, it could be quite dense
compared to A, and in general it is very nearly singular. A combination of direct
and iterative methods may be applied, but the system must be solved accurately in
order to retain the condition Ax = b.

If the barrier parameter p is held constant, the vector r will eventually become
small as Steps 1-6 are repeated. The iterations then start again with a smaller it.
In practice, we typically give p the values 0.1, 0.01, ... , 106 (say) over a total of
20-50 iterations.

3.2. Relationship to Karmarkar's projective method

The best choice of p remains open to question. In [18] it was shown that if the
Newton barrier method is applied to the special LP problem (1), and if p and a
are chosen in a certain (easily computed) way, then the sequence of points x are
identical to those generated by Karmarkar's original method. In other words, the
"new" method for linear programming may be viewed as a special case of Newton's
method for linearly constrained optimization.

This is not to minimize Karmarkar's contribution. For example, the "special
case" argument was deficient without a proof that the special choice of U would be
positive.

One practical contribution has been Karmarkar's unrelenting advocacy of the
approach, even though it requires solution of systems involving AX 2AT. Years earlier,
prior to modern sparse-matrix techniques (e.g., [14]), researchers had rejected similar
approaches as being unacceptably slow on large problems.

In addition, Karmaxkar's particular choice of pL and a enabled him to obtain
a polynomial bound on the iterations and work required. (No such bound was
previously known for barrier methods.) Recently, Gonzaga [221 has shown that when
Karmarkar's method is generalized to treat problem (2) it again corresponds to the
barrier method with a certain positive choice of p. Hence, the projective method
and the primal barrier method are now known to be polynomial-time algorithms
even on the more useful formulation (2).

Note that the Newton-barrier approach has practical and theoretical benefits.
In contrast to Kamarkar's original algorithm, the extension to other forms of LP
and to nonlinear programs is trivial. The Newton-barrier approach is also the basis
of the analysis in [34,37].

3.3. Results

In [18], results were given for nine of the problems sent to Karmarkar (see Sec-
tion 1.2); the remainder had upper bounds and could not be run. In eight of the
nine cases, the primal barrier method was found to be comparable in speed to the
simplex method, and on two additional (larger) models a speed-up factor of 3 was
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obtained.3 4

Unfortunately, a further series of highly degenerate models showed an unfavor-
able trend with increasing problem size. Nevertheless, the conclusions in (18] struck
an optimistic note for interior-point methods, particularly for problems with special
structure.

More recently, a new primal barrier implementation has been developed at Stan-
ford [16]. Of particular interest is the solution time for PILOT: about 9 hours on
a VAXstation II. This is a speed-up of 2.3 on a real-world model that is unques-
tionably non-trivial for the simplex method. The periodic structure revealed in [261
may be a contributing factor, but in any event, this represents a bright note for
the interior-point approach within the scope of current repeatable computational
results.

3.4. A dual barrier method

The barrier subproblem corresponding to the dual LP (3) is

maximize bTir + i Zln(cj - aTr),
j=l

which is a purely unconstrained problem. For certain x and X [19], Newton's method
leads to the equations

AX 2ATq = y(Ax - b), 7r +- 7r + aq, (6)

and we can capitalize on the fact that the system for q need not be solved exactly [5).
This opens to door to obtaining "cheap" approximate factors of the matrix AX 2AT,
for use as preconditioners with the conjugate-gradient method.

3.5. Results

For reasons described by Gill et al. [19], a sparse factorization XAT = LU should
provide a useful preconditioner. An experimental implementation has so far proved
to be less efficient than hoped. However, we anticipate that the advantages of
approximate factors will ultimately come to the fore (see Section 7.3).

4. Affine Scaling

Independently of the barrier-function development described above, groups were at
work on algorithms for the primal problem (2) and the dual problem (3). These
were the so-called affine variants of Karmarkar's method, which seemed at least to
be simpler than the projective method.

3 The results reported here and in later sections were obtained using "cold starts". The ability to
utilize "good" starting information remains virtually unique to the simplex method. The entropy-
based method of Eriksson and the shifted barrier method also have this advantage; see Section 8.

4 Comparisons with the simplex method were made using various versions of MINOS [36 without
scaling or partial pricing. For future experiments we would in general recommend specifying SCALE
OPTION 2 and PARTIAL PRICE 10; see Lustig [26].
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4.1. A primal affine method

At Bell Labs, Vanderbei et al. [401 developed an algorithm that proved to be the
limiting case of the primal barrier method as 1L --, 0 [18]. It was subsequently found
that the method was first proposed by Dikin in 1967 [6].

Search directions are generated by the same system (5). Any hint of quadratic
convergence (associated with Newton's method) is lost by taking p = 0, and to date
there has been no proof of polynomial-time complexity. Nevertheless, respectable
computational results were obtained from a production code developed at Bell Labs
(Chen [31).

We believe that a primal affine algorithm is embodied within a combined soft-
ware/hardware system that is currently being marketed by AT&T: the KORBXTM

Linear Programming System, which includes an Alliant multi-processor computer.

4.2. Dual affine methods

Under the guidance of Karmarkar, researchers at Berkeley [2] developed an analo-
gous dual algorithm that again proved to be the limiting case of the (dual) barrier
method as p -. 0. Several advanced implementation techniques were employed [1],
and promising results were obtained (see next section).

A similar implementation was developed in 1986 at Bell Communications Re-
search by Monma and Morton [32].

4.3. Results

There is now a collection of over 50 test problems available publicly via netlib (see
Gay [10], Lustig [26]). About 30 of these problems were used to test the dual
affine implementations just mentioned. Both codes achieved average speed-ups of 3
relative to MINOS (versions 4.0 and 5.0 repectively).

As before, some of the more interesting problems were not tested because the
implementations could not handle upper bounds. We remark that the algorith-
mic parameters needed for satisfactory performance on all of the problems would
probably give poorer average performance on the 30-problem subset.

Until recently it was believed that a large speed advantage was arising in the
Berkeley implementation [2] from the use of in-line code (and large amounts of
memory) during the Cholesky factorization [1]. However, Gay [13] has now shown
that such an advantage need not exist.

5. Primal-Dual Methods

Barrier functions have recently been taken up by several authors in a primal-dual
context (e.g., see Monteiro and Adler [33], Lustig [27]). Briefly, these seek to solve
the primal and dual barrier subproblems (4), (6) simultaneously. The main equation
to be solved has the same form (5) as for the primal barrier method, except that
the diagonal matrix X 2 is replaced by XZ - 1 .
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The equations Ax = b, ATr + z = c, x > 0, z > 0 are satisfied throughout, and
the iterations work towards satisfying the complementarity condition XZ = uI as
P -+0. 

5.1. Results

At first sight, the primal-dual approach would seem to incur the disadvantages of
both primal and dual algorithms, at least in terms of obtaining initial interior points.

Nevertheless, McShane et al. [28] have given computational results for a primal-
dual implementation, as well as for the dual affine code of [32] (evidently further
refined). On the 30-problem subset mentioned above, both codes showed an average
speed-up of about 4 relative to MINOS 5.0.

6. A Single-Phase Dual Barrier Method
I

In order to run all of the test problems in the netlib collection it is necessary to

develop an algorithm that treats the primal LP problem in its most general form:

Primal: minimize cTx subject to Ax = b, I < x < u. (7)

The corresponding dual problem may be written

Dual: maximize bTr - uTy + lTz %
S, Z(8)

subject to ATr - y + z = c, y, z > 0.

An unexpected advantage arising from this formulation is that the dual constraints

ATxr - y + z = c are easily satisfied by a suitable choice of the slacks y and z.
Further details are given Lt Gill et al. [17].

6.1. Results

An implementation to solve (8) is currently under development at Stanford. In

preliminary tests, speed-up factors in the range 1 to 5 relative to MINOS 5.2 have
been obtained for most of the first 53 problems in netlib.

These results are similar to those obtained for the primal barrier implementa-
tion [16] mentioned in Section 3.3, which is designed for problem (7). Both codes

use essentially exact Cholesky factors of AX 2AT, with iterative refinement and a
partitioning (Schur-complement) scheme to handle dense columns of A. It is hoped
that the dual implementation will show an advantage with inexact factorization and

preconditioning (Section 7.3). %

7. Computational Matters

The issues of starting points, rank-deficiency, termination criteria, restarts, etc. are
too lengthy to discuss here. We choose just four topics.

'S



7. Computational Matters 9

7.1. Normal equations versus least squares

In all of the interior-point algorithms, the search direction is obtained from a system
of the form

AX 2ATq = v, (9)

where X is a diagonal matrix and v depends on the algorithm. If the right-hand
side happens to be of the form v = AX 2 r, this system is a set of "normal equations"
equivalent to the linear least-squares problem

m IIX(r - ATq)112 . (10)

Least-squares prob' !ms can be solved more reliably if treated as such. For example,
conjugate-gradient methods generally require more iterations to solve (9) than they
do to solve (10), particularly when the matrix XATis ill-conditioned (as it invariably
is in this context).

We note that not all interior-point methods permit the least-squares formulation.
In this respect, the advantage lies with the primal and primal-dual variants, and
with the single-phase dual algorithm.

To date, all implementations except [18,19] have used the (less reliable) normal-
equations approach.

7.2. Boundedness of the projections

A clue to the survival of interior-point implementations in the face of extreme ill-
conditioning of XAT has recently been provided by Stewart [39]. In the notation of
equation (10), Stewart shows that as long as X is diagonal with nonzero elements
and A has full row rank, the weighted pseudo-inverse A1X = (AX 2AT)- 1 AX 2 and

the oblique projection ATAt are both bounded in norm, independently of X.
Briefly, this means that q and ATq in (10) will not be arbitrarily large, even if

X causes AX 2AT to be almost singular.
In practice, of course, Cholesky factorization may fail if AX 2AT is almost singu-

lar, and other factorizations may be needed; see Section 7.4.

7.3. Preconditioning

In the linear programming context, virtually all implementors have used exact
Cholesky factors of AX 2 AT (excluding perhaps a few dense columns of A). The
main reason is that the sparsity pattern of the normal-equations matrix does not
change as X changes; hence a single "analyze" can be performed on the sparsity
pattern of AAT to obtain an ordering of the rows of A that preserves the sparsity
of the Cholesky factor. The same ordering is used for all subsequent factorizations
AX 2AT = RTR.

An exception is Karmarkar himself. In talks such as [24] he advocates forming
the normal-equations matrix only approximately:

M = AX 2AT+ El,

. .! ~ **~ .~ . . . . .. .......
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and then factoring M approximately:

N(M + oI)NT = I+ E2 ,

where or is an undocumented spectral shift, and El and E,2 are "small" matrices
representing the error involved. The matrix N is then used as a preconditioner
when the conjugate-gradient method is applied to (9). (It could also be used with
the least-squares formulation (10).)

A further device is to retain the same preconditioner N for seveid iterations
of the main algorithm (perhaps modifying N slightly but cheaply at each iteration
[23,381).

Are these the keys to Karmarkar's spectacular run-times? Perhaps so, at least
for some problems. Preconditioning of this kind is widely used in other areas and
has been studied in the LP context by Gay [11]. Further study is well justified, as
it is for LU preconditioning (Section 3.5). We note that as conveigence occurs, the
preconditioner must become more exact. For general problems, this can be achieved
easily with LU factors, but not necessarily with Cholesky factors.

7.4. Alternative factorizations

While Cholesky factors of AX 2AT have been preferred to date on efficiency grounds,
we mention that greater reliability is likely with orthogonal and symmetric-indefinite
factorizations of the form

XAT=Q(R) and (H A U" )0 (A 0 )=UTD.

For the case where A is sparse, considerable progress has been made recently by
George, Liu and Ng j151 and Duff [7]. Dense columns in A remain a complication
for some problems. Here the dual algorithms have an advantage in not requiring a
(dense) artificial column for Phase 1.

8. Promising Approaches

Before closing, we review some methods that have yet to be proven computationally
but appear to have significant computational advantages.

8.1. Eriksson's algorithm

The primal-dual approach was discussed in Section 5. A significantly diffeiret
primal-dual algorithm was given in 1981 by Eriksson [8] and further developed in [9].
A primal subproblem is used, based on an entropy function and a current estimate
of x (xk):

n

Primal: minimize crx - p E fxjln(xj/X) _ (XJ  -X)}
j=l (11)

subject to Ax = b.

,1 p -- .-~
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It is assumed that xk > 0, but not that Axk = b. Instead, the dual of (11) is treated
as an unconstrained problem in 7r:

n

Dual: maximize bT~r _ U X ~e- ZJ/ A,  (12)

where z = c - ATir. An inexact Newton method is applied to (12), with the central
system of equations taking the form

AXATq = b - AXk .  (13)

This algorithm has many intriguing properties, and we believe it to be of great
promise. For example, the matrix AXAT will in general be better-conditioned than
the usual AX 2AT. Competitive computational results await implementation of a
sparse preconditioner for (13), using techniques that have been applied to barrier
algorithms elsewhere.

8.2. The Box Method

One interpretation of the affine invariant algorithms is that they optimize the objec-
tive function subject to feasibility and a quadratic constraint. The ellipsoid defined
by the quadratic constraint may be replaced by a "box".

Such an approach has been described by Zikan and Cottle [41,42], and promising
computational results have been obtained for the special case of network problems.
For more general linear programs, an appealing feature is that a normal simplex-
type basis factorization B = LU is suitable for the main steps of the algorithm. In
addition, large numbers of columns of B can be replaced in the basis at once.

8.3. Shifted barrier methods

Apart from Eriksson's algorithm, the only method that specifically allows an arbi-
trary starting point is the shifted barrier approach (Gill et al. [21]). For problem
(2) the objective function is of the form

F.,,(x) = cTx - EZw ln(x j + sj),

where w is a set of weights corresponding to u, and s is a set of shifts. .:,,

Apart from the ability to use a "good" starting point, an advantage is that
the condition of the system used to obtain a search direction can be controlled
by judicious choice of w and s. Convergence results have been established and a
preliminary implementation has been developed at Stanford.

9. Conclusions P

Some broad thoughts have already been given in Section 1.4. Many additional
references could have been cited, all contributing to the current outlook.
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in summar:,, we believe that the simplex method will remain the workhorse for
the majority of existing applications, given practitioners' normal mode of operation:
frequent restarts on slightly modified models.

However, from the last few years of experience we would say that interior-point
algorithms are efficient on a rather larger class of (general) linear programs than
we once would have supposed. New and extremely large applications will require
decomposition if simplex techniques are to succeed. The alternative is a radically
new approach, such as we seem to have here. While much trial and error lies
ahead, we feel that the future for the new approach to linear programming shines
challenging and bright.

In the meantime, we have a new way of identifying examples where the simplex
method has performed poorly. We also have a renewed interest in improving the
simplex method (e.g., [20,25]).
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